Guiding Principles

1. The reagents core should serve the entire community. (It is possible to serve the community and to advance diagnostics.)

2. Validation, annotation, coordination, and curation into a database are the missing links, and the most valuable service the Reagents Core can provide.

3. New, higher-throughput technologies should be developed in preparation for expanding this project to target the entire proteome.

Sources

Applications

Validation/Annotation

commercially available

unscreened hybridomas

requests from community

antibodies funded by grants

In what types of applications should affinity reagents be required to perform?

Research Areas of Antibody Customers

- •56% on cellular development
- •47% on gene/protein regulation
- •44% on molecular mechanisms of human diseases
- •39% on molecular structure/function characterization
- •28% on non-human disease

Shared by Epitomics

- •79% Western
- •60% ELISA
- •55% Immunofluorescence
- •50% IP
- •44% IHC

Shared by Neoclone

Survey of most recent 100 projects

- •58% Western
- •34% ELISA
- •28% IHC
- •9% Immunoaffinity Purification
- •6% IP
- •6% FACS
- •2% Chromatin IP (ChIP)

Shared by Abnova

- •WB
- •IHC
- •IP
- •ELISA

Antibodies by Design, a Division of MorphoSys

- •Westerns
- •IHC
- •ELISA
- •FACS
- •IP

SISCAPA: an emerging technology.

Journal of Proteome Research 2004, 3, 235-244

>10⁴ fold enrichment S2N

Recommended Target Applications

<u>Sources</u>	<u>Applications</u>	Validation/Annotation
commercially available		
requests from community	1. Western	application-independent
	2. ELISA	
	3. Immunofluorescence /	
	FACS	
	4. Immunoprecipitation	application-dependent
	5. Immunohistochemistry	
unscreened hybridomas	6. SISCAPA	

Priority Questions

- 1. How sensitive is the antibody (affinity/avidity)?
 - •Biacore?
 - •Antigen spike experiments?
- 2. Does my antibody bind what I want it to bind?
 - tissue arrays (+/- controls)
 - protein or prEST arrays
 - •cell lines +/- expression of target
 - siRNA
 - cDNA
 - KO
- 3. How specific is my antibody? (S2N)
 - •tissue arrays (+/- controls)
 - protein or prEST arrays
 - •cell lines (+/- controls)
 - •X-SPECIES??

Validation methods for antibodies (application-independent)

Method	Description	Examples
Antigen-based Assays based on the antigen us		ELISA, protein arrays,
	for immunization (immunogen)	SPR, antigen adsorption
Target-based Analysis of native or partially		Western blots, IHC,
	denaturated protein from natural	immunocapture (Npull-
	sources (such as cell lysates)	downsÓ)
RNA-based	Comparison of expression levels	Transcript profiling, in situ
	at the protein and RNA level	hybridizations
DNA-based	Bioinformatic analysis using	Signal peptide,
	predictive algorithms (as	transmembrane regions,
	compared to experimental data)	localization signals
Genetics-based	The use of genetic mutants or	Transgenetics, RNAi,
	recombinant constructions to	GFP-fusions (subcellular
	validate the target	localization)
Epitope-based	Comparison of two of more	Antibodies to PrESTs or
	antibodies directed to different	synthetic peptides
4	parts of the same target	

Uhlen et al (2005) A human protein atlas for normal and cancer tissues, Mol Cell Proteomics, in press (on-line)

Application-independent

- 1. What are the binding affinities of the Ab? Include Biacore measurements with each Ab.
- 2. Characterize specificity by screening on arrays of expressed human proteins (prESTs?), reporting prevalence of cross-reactions.
- 3. Validate target identity with control lysates (siRNA?).
- 4. Better information on species cross-reactivity (human, mouse, rat, etc)
- 5. Include specific antigen information/sequence
- 6. Formulation of Abs (carriers and buffers included in mix)
- 7. Accurate shelf life and storage conditions
- 8. Provide both Ab concentration (mg/ml) and working dilutions (1:1000 etc.)
- 9. Showing enough data from reagents is always an issue. If groups could share more data with the companies without publication issues, then perhaps it could benefit everyone using the reagents.
- 10. Test the new lots in all the applications side by side with the old lot.

Application-Specific Validation

- **1.** <u>Western blot</u>: show entire blot with positive and negative controls, show background signal, results on multiple cell lines, cross-species "zoo blots"
- **2. ELISA**: standard curve showing full dynamic range (upper and lower limits of detection) and c.v. of analyte spiked into plasma/cell lysate.
- **3.** <u>Immunofluorescence</u>: confocal images from multiple cell lines and tissues, including positive and negative controls where possible.
- **4.** <u>Immunoprecipitation</u>: western blots of both initial lysate and captured proteins, show WB data for protein complex pulldowns
- **5. SISCAPA**: MS-based determination of enrichment, specificity, and limit of quantification of target peptide relative to isotopically labeled peptide spiked into complex mixture (plasma or cell lysate).

Immunohistochemistry

Formalin-fixed, paraffin-embedded tissue specimens afford the best morphology and represent the broadest possible range of tissues and diseases.

- Screen tissue arrays and cell line array (positive and negative control cell lines in paraffin blocks)
- •For ligands that have been studied previously, the pattern and anatomic distribution of staining should be consistent with what has been reported in the literature. (immunohistochemistry, Northern-blot analysis, in situ hybridization, EST expression profiling, radioimmunoassay, and ligand-binding data)
- •For "orphan ligands," supporting data are not available, and evaluation of the specificity and validity of IHC findings relies more heavily on cross-concordant findings with multiple antibodies and on gene expression studies such as Northern-blot analysis or in situ hybridization.
- •Another criterion for evaluating antibody specificity and performance is that the subcellular localization of the staining signal should reflect the protein's function.